
Using Sensors with V5



Sense-Plan-Act

• Sense, Plan, Act (SPA) summarizes the three critical capabilities that every 
robot must have in order to operate effectively:

1. SENSE: The robot needs the ability to sense important things about its 
environment, like the presence of obstacles or navigation aids. 

• What information does your robot need about its surroundings, and how will it gather that 
information?

2. PLAN: The robot needs to take the sensed data and respond 
appropriately to it, based on a pre-existing strategy. 

• Does your program determine the appropriate response, based on the sensed data?

3. ACT: Finally, the robot must carry out the actions that the plan calls for. 
• Have you built your robot so that it can do what it needs to, physically? Does it actually do 

it when told?



Sensors

• Sensors are part of what makes a robot, a 
robot. 

• Rather than just blindly running sequences 
of instructions, robots use sensors to gather 
information about the world around them, 
and respond based on programming. 

• To take advantage of reacting to sensor 
readings while the program is running, we 
need to take a look at VEXcode Structures.



Variables - Continued



Programming Discussion – Data and Variables – Review

• Your robot is a type of computer. 

• Computers are designed to store, process, 
and retrieve information, or data.

• Your robot is able to store, process, and 
retrieve data using Variables.
• This is not the same as an Algebraic variable!

• A Variable is space set aside in your robot’s 
memory to store and retrieve data…

• ..but we can still use them in calculations!

Data

Variable



Programming Discussion – Data and Variables

• In VEX C++, all variables must have a type and a name.
• Variable type defines the type of data that the variable will hold.

• Variable name defines how we can refer to the variable throughout the program.



Programming Discussion – Variable Types

• There are multiple types of variables based on the type (and size) of data 
that you want to store, retrieve, and process in VEX C++.

• Some common types (there are more):
Type Keyword Sample Data Notes

Integer int -337, 0, 488, 10283 - Whole numbers

Float float -22.7, 0.0, 0.432, 3.14 - Decimal numbers

Bool bool true, false, 1, 0 - True/False values

Character char ‘a’, ‘x’, ‘7’, ‘&’ - Single Characters using single quotes

String string “Hello World!”, “asdf_1234” - Multiple Characters using double quotes
- Must include using namespace std;

or  prepend std::



Programming Discussion – Variable Names

• Variable names follow the same rules as Motor and Sensor names.

• Variable names must be:
• One word

• Made up of letters, numbers, and underscores

• Not already a VEX C++ reserved word

• Variable names should be:
• Descriptive of the data that is being stored



Programming – Variables

• To create a variable, first specify its type, then provide a name.

• To store a value in a variable, follow the format:
“variable name = value;” 

• To initialize a variable to a value, you can also use the following shortcut:



Programming – Calculations

• Variables allow you to store and retrieve data to perform calculations!

• Notice that the result of our calculation is stored in a variable – the equal 
sign on line 12 would be impossible as an Algebraic equation!



Loops

• By the end of this section you 
will be able to use a while loop 
to repeat code. 



Repeating a section  of code while a condition 
is true.

while (I have not reached my desired destination)

{
Take another step in the right direction

}

When to use it: 

When you want to repeat something an unknown number of 
times (take another step) AND may never repeat (You were already at 
your desired location. No need to move)



while loop

• How it works
• A while(){} loop repeats any code between its curly braces while the condition 

between its parenthesis is true

• Syntax
while (condition)

{

}

Note: There is no ; 
after the condition



Programming – while(){} loops – Program Flow

• When the robot reaches a while(){} loop the first thing it does is 
check the condition between the parenthesis.

• A condition is a special type of question the robot can answer based 
on Boolean Logic.
• Has to be answerable with a “Yes/No” or “True/False”



Programming – while(){} loops – Program Flow

• If the condition was true then the robot runs all of the code between the 
curly braces, once.

• After running all code between the curly braces, Program Flow returns to 
the beginning of the while(){} loop and the condition is checked again.

• Wash, rinse, repeat!

12



Programming – while(){} loops – Program Flow

• If the condition is ever not true, or false, when it is being checked then 
the robot skips all of the code between the curly braces and moves on 
in the program.

• Note: The Program Flow is only ever at one “spot” at a time!
• The robot is not simultaneously checking the condition and running the code!



But what if you want to loop forever?
• Infinite loop.  When the condition is ALWAYS true.

Examples:
while (true)
{}

while (1==1)
{}

while (1)
{}



Conditions: Programming Discussion – Relational Operators

• Relational Operators (sometimes 
called Inequality or Comparison 
Operators) allow you to form a 
Boolean Condition.
• These operators compare the 

value on the left with the value on 
the right, and the result is either 
true or false.

• Note that = and == are not the 
same thing in programming!
• = sets the value on the left equal 

to the value on the right
• == checks if the value on the left is 

equal to the value on the right.

Operator Meaning

== Is Equal To

!= Is Not Equal To

> Is Greater Than

< Is Less Than

>= Is Greater Than or Equal To

<= Is Less Than or Equal To

! Not.  Turns a true to false 
or a false to true



while loop example
int main() 

{

int count = 0;

while (count<10)

{

Brain.Screen.print("Count = %d", count);

Brain.Screen.newLine();

task::sleep(500);

count = count +1;

}

}



while loop example 
program

int main() 
{

int x = 10;
int y = 120;
int radius = 10;
Brain.Screen.setPenColor(black);
while (x<480)
{

Brain.Screen.setFillColor(green);
Brain.Screen.drawCircle(x, y, radius);
task::sleep(50);
Brain.Screen.setFillColor(black);
Brain.Screen.drawCircle(x, y, radius);
x = x + 2;

}
Brain.Screen.setFillColor(red);
radius = 1;
while (radius < 500)
{

Brain.Screen.drawCircle(x, y, red);
Brain.Screen.setFillColor(radius);
task::sleep(10);
radius = radius + 1;

}
}



There are three programming Structures

• Linear (Block)
• Brain…

• x=x+1;

• Looping (Repetition)
• while ()

• Decision (Selection)
• None yet, 

• Time for if and else



if  and else

• When you want to respond to something one time (not looped)

• If the sensor is pressed then stop lifting the arm

• If something is too close back up

• If I cross a white line then turn,



How it works. 

• If the condition is true then run the commands that are in the next 
set of {}.
If the condition is false then skip to the code after the {}.

• Syntax

if (condition)

{

}



if Example
int main() {

int count = 0;

while (count<10)

{

if (count < 4)

{

Brain.Screen.print("Less than 4!@!@#@!#@@!#");

}

Brain.Screen.print("Count = %d", count);

Brain.Screen.newLine();

task::sleep(500);

count = count +1;

}

}

Programming Style Note:
Indent the code that is being 

controlled by a structure.
i.e. The code between the {}.



if example with AND &&int main() {

int count = 0;

while (count<10)

{

if ((count > 3) && (count < 6))

{

Brain.Screen.print("In the middle");

} 

Brain.Screen.print("Count = %d", count);

Brain.Screen.newLine();

task::sleep(500);

count = count +1;

}

}

The condition  is true ONLY if 
count>3 AND count <6.



if example with OR  ||int main() {

int count = 0;

while (count<10)

{

if ((count < 2) || (count > 6))

{

Brain.Screen.print(“On the outside");

} 

Brain.Screen.print("Count = %d", count);

Brain.Screen.newLine();

task::sleep(500);

count = count +1;

}

}

The condition  is true if count<3 
OR count >6.



If else :How it works

• If the condition is true then run the commands that are in the next set of 
{}.
If the condition is false then run the commands in the {} after the else

• Syntax

if (condition)

{

//Commands done when the condition is true

} else

{

//Commands done when the condition is false

}



If else example
int main() 
{

int count = 0;
while (count<10)
{

if (count < 5)
{

Brain.Screen.print("Low ");
} 
else
{

Brain.Screen.print("High ");
}
Brain.Screen.print("Count = %d", count);
Brain.Screen.newLine();
task::sleep(500);
count = count +1;

}
}



Chaining if..elseint main() {
int count = 0;
while (count<10)
{

if (count < 2)
{

Brain.Screen.print("Low ");
} else if (count < 5)
{

Brain.Screen.print("Middle ");
} else
{

Brain.Screen.print("The top ");
}
Brain.Screen.print("Count = %d", count);
Brain.Screen.newLine();
task::sleep(500);
count = count +1;

}
}

Count < 2?

True: 
“Low”

False 
Count <5?

True: 
“Middle”

False: 
“The Top”

Code Break: Enter and test this 
program.



Back to Sensors

• Sensors are part of what makes a robot, 
a robot. 

• Rather than just blindly running 
sequences of instructions, robots use 
sensors to gather information about the 
world around them, and respond based 
on programming. 



Sensor Overview – Bumper Switch v2

• The Bumper Switch v2 reports to the 
Robot Brain is whether it is pressed in, 
versus released.

• The Bumper Switch v2 allows the robot 
to sense physical collisions:
• Robot body bumps into an obstacle

• Robot arm reaches a mechanical limit

• This sensor connects to 1 of the 8 Tri-
Ports (A – H) on the V5 Robot Brain.

• The sensor “cap” may be disconnected 
and other components may be used to 
create a more ideal “hit area”.



Connecting the Bumper Switches

• Uses for the Bumper Switch
1. 1 Bumper Switch on the rear chassis of the V5 Clawbot

2. 1 Bumper Switch on the top-front of the chassis, so that the arm makes contact



Checking Sensor Values from the V5 Brain

• The V5 Robot Brain allows you to check the values 
of the Bumper Switches under the Devices menu. 
• Choose Devices, then select the triangular icon

• The Devices menu does not automatically “know” 
what type of sensor is connected.
• Tap the box where the Bumper Switch is connected 

until it displays Digital Input.

• The Bumper Switch is a type of touch sensor, which is a 
Digital Sensor.

• When the Bumper Switch is pressed, it should 
have a value of High (1), and when released a 
value of Low (0).

Connect Bumper Switch and check how the values 
change only using the V5 brain. My examples will be 

based on the sensor plugged into port A.



•Formatting Notes
•The device type.  Defines the type of sensor.  More options on the next slide.
•The device name can be any name that isn’t already used by the programming language.

•Start with a letter
•No spaces/punctuation
•Not a reserved word or a name that is previously used.
•Describes the sensor

•The device port needs to be in parenthesis right after the sensor’s name. Assignment for three wire port 

devices will always start with Brain.ThreeWirePort. and can be assigned any letter A-H matching where 

the sensor is plugged.

General Sensor Configuration in VEXcode: Before task main()

Device Type Device Name Device Port



•Some Device Types Supported
• bumper (Works just like limit)
• limit (Works just like bumper)
• sonar
• pot
• light
• line
• vision

Device Type Device Name Device Port



So many ways to do the same thing…
Defining a limit switch/touch sensor/bumper switch

limit Limit1 ( Brain.ThreeWirePort.A ); 

vex::limit Limit1 ( Brain.ThreeWirePort.A ); 
vex::limit Limit1 = limit( Brain.ThreeWirePort.A ); 
vex::limit Limit1 = vex::limit( Brain.ThreeWirePort.A ); 

bumper Limit1 ( Brain.ThreeWirePort.A ); 
vex::bumper Limit1 ( Brain.ThreeWirePort.A ); 
vex::bumper Limit1=limit( Brain.ThreeWirePort.A );
vex::bumper Limit1 = vex::bumper( Brain.ThreeWirePort.A ); 

For this workshop I’ll 
focus on the shorter to 

code options.



Declaring and using the bumper/limit 
switch/touch sensor
• Declaring the limit switch. Before task main()

• limit Limit1 ( Brain.ThreeWirePort.A ); 
• Limit1 is the what the sensor is named in this example.  The programmer can 

pick a different name. It must start with a letter, no spaces, no punctuation, 
not a reserved word, not used somewhere else and is descriptive.

• Getting the state: Inside task main()
• Limit1.pressing()
• With return true if it is being pressed
• Will return false if it is not being pressed

• Example on next slide



Example Limit/Bumper Switch Program
// define your global instances of motors and other devices here
limit Limit1 = limit( Brain.ThreeWirePort.A ); // Plug limit switch or bumper into 3-wire port ‘A’ 

int main()
{

Brain.Screen.print("User Program has Started.");
int pressedCount = 0; 
Brain.Screen.printAt(1, 40, "The pressed count is %d", pressedCount);
while(true)                                          //Will loop everything inside the next {} as long as true is true
{ 

if( Limit1.pressing() ) //If the limit switch is pressed do the commands in the next {}, 
//or else skip the commands in the next {}

{ 
while( Limit1.pressing() )  //While the switch is still pressed do everything inside the next {}
{

task::sleep(20);  //Wait for 20 milliseconds
} 
pressedCount = pressedCount + 1; //Add 1 to the variable pressedCount
Brain.Screen.printAt(1, 40, "The pressed count is %d", pressedCount); //Shows the count

}
task::sleep(20);

}
}

Code Break: Enter 
and test.

High Flyers.  Use 4 touch sensors to make your Brain into an ‘Etch-A-
Sketch’.  Can even add another touch sensor to ‘Clear the Screen’.



Potentiometer

• Measure the angle position

• Measures 0 to 250 +/- 20 degrees

• Returns values in degrees, percentage or millivolts

• Uses
• Knowing the angle of an arm

• Selecting Autonomous code

• …



Potentiometer Declaration and Use

• Declaration: Before task main()

pot Potentiometer1 ( Brain.ThreeWirePort.E );
• Potentiometer1 is the what the sensor is named in this example.  The programmer can 

pick a different name. It must start with a letter, no spaces, no punctuation, not a 
reserved word, not used somewhere else and is descriptive.

• E is the port where the Potentiometer will be attached.

• Reading the values of the potentiometer. Inside task main().  Returns an 
integer value representing the angle.
• Potentiometer1.value(rotationUnits::deg)

• Potentiometer1.value(rotationUnits::pct)

• Potentiometer1.value(rotationUnits::mV)



Potentiometer Sample Program
// define your global instances of motors and other devices here

pot Potentiometer1 ( Brain.ThreeWirePort.E );
controller Controller1 = vex::controller();

int main() 
{

// Clear the controller's screen.
Controller1.Screen.clearScreen();

while(true) 
{ 

// Manually turn the shaft connected to the potentiometer. This will cause the values to change.
// Print the value of the potentiometer in degrees to the Screen.

Brain.Screen.printAt(1, 40, “Potentiometer = %5f", Potentiometer1.value(rotationUnits::deg));

// use line 3, the bottom line, on the controller
Controller1.Screen.setCursor(3,1);
// Print the value of the Potentiometer sensor on the controller’s screen.
Controller1.Screen.print("Pot1 = %5f", Potentiometer1.value(rotationUnits::deg));

task::sleep(100);
}

} More on using the Controller’s 
display on the next slide.

Code Break:
Enter code, test and experiment.

Be sure to have a Controller connected to the 
Brain.  Include comments as needed for your 

reference.



Some Controller Communication Features
• Initializing the Controller.  Before task main()

• controller Controller1 = vex::controller();
• Controller1 is the what the sensor is named in this example.  The programmer can pick a different name. It must 

start with a letter, no spaces, no punctuation, not a reserved word, not used somewhere else and is descriptive.

• Clear the screen: Inside task main()
• Controller1.Screen.clearScreen();

• Set the Cursor position.  (1,1) is row 1 column 1, the top left of the screen.  You can use up to three rows.
• Controller1.Screen.setCursor(1,1);

• Printing on the Screen at the current cursor location
• Controller1.Screen.print(“Hello World”);

• Controller1.Screen.print("Pot1 = %.5f", Potentiometer1.value(rotationUnits::deg));

• “%.5 f”  This is setting the position for a float (real) value showing 5 values to the right of the 
decimal. The value returned from the Potentiometer1.value() function will go into this position.

• Haptic (Force) Feedback!!!
• Controller1.rumble("--- ...");

• Dash is long
• Dot is short
• Space is pause
• Up to 8 characters



Potentiometer Activities: Complete one of the 
following.

• Shake it Up.
• 0 to 90 degrees. No shake

• 91 to 180 degrees. Shake with short shakes

• 181 to 270 degrees. Shake with long shakes

• Draw a circle on the brain where the size 
changes based on the Potentiometer 
reading.  
• The lower the reading, the smaller the circle.



Ultrasonic Rangefinder



Ultrasonic Rangefinder
• The Ultrasonic Rangefinder uses sound waves to 

detect how far away it is from the nearest object.
• One side emits a sound wave - the other side 

waits for the echo to bounce off of an object and 
return to the sensor.
• Distance is calculated based on elapsed time!

• Features:
• Can provide distance values in millimeters, 

centimeters, or inches
• Connects to the V5 Robot Brain through two Tri-Ports
• Has two sets of wires, labeled INPUT and OUTPUT



Ultrasonic Range Finder: Connecting to Brain

• It requires 2 Tri-Ports!

• The ports must be one of the ordered 
pairs 
(A-B, C-D, E-F, or G-H) 

• OUTPUT wire must be plugged in on the earlier port 
(first alphabetically)

• INPUT wire must be plugged in on the later port 
(second alphabetically)

• It is good practice to for custom sensor names to 
reflect where and what they are!



Thresholds

• The Ultrasonic Rangefinder provides a range of values, but the robot 
can only make Yes-No, True-False Boolean Comparisons. 

• A Threshold value is chosen to separate the range of many values 
into two categories: Near or Far

NEAR
FAR

THRESHOLD



Additional Considerations

• The Ultrasonic Rangefinder provides distance values-based sound 
waves – things that affect sound waves will affect this sensor!
• Sound-absorbent or reflective materials = 

• When it fails to receive an echo, it has a negative distance value. 
• This includes the beginning of your program before the first echo is received.

• Sound waves expand as they travel, so Ultrasonic Rangefinder may 
be able to detect objects in a cone-shaped Field of View.



Declaring and using Sonar Sensor

Declaring the Sonar Sensor: Before task main()

sonar Sonar1( Brain.ThreeWirePort.C );
Sonar1 is the what the sensor is named in this example.  The programmer can 

pick a different name. It must start with a letter, no spaces, no punctuation, not a 
reserved word, not used somewhere else and is descriptive.

//Output wire is plugged into Port C in this example.

// Input wire must be plugged into the next port, Port D in this example.

Reading Values from the Sensor, inside task main()

• Sonar1.distance(distanceUnits::in)
• Returns the number of inches as a real value (float, double)

• Sonar1.distance(distanceUnits::mm)
• Returns the number of millimeters as a real value (float, double)

• Sonar1.distance(distanceUnits::cm)
• Returns the number of centimeters as a real value (float, double)



Sample UltraSONIC Range Finder
sonar Sonar1 ( Brain.ThreeWirePort.C );  //Output is plugged into Port C

// Input must be plugged into the next port, Port D in this case

int main() 

{

// Wait 2 seconds or 2000 milliseconds before starting the program.

task::sleep( 2000 );

// Print to the screen that the program has started.

Brain.Screen.print("User Program has Started.");

while( true ) 

{

//...Spin the motors forward.

Brain.Screen.printAt(10,40,"Sonar Reading %f inches ",Sonar1.distance(vex::distanceUnits::in) );

Brain.Screen.printAt(10,60,"Sonar Reading %f mm ",Sonar1.distance(vex::distanceUnits::mm) );

Brain.Screen.printAt(10,80,"Sonar Reading %f cm ",Sonar1.distance(vex::distanceUnits::cm) );

// Sleep the task for a short amount of time to prevent wasted resources.

task::sleep(20);

}

}

Your turn.  Code and test 
the sensor readings.

What value is returned 
when it does not see 

anything?



What does the 
following code do?

sonar Sonar1( Brain.ThreeWirePort.C );

int main() 
{

// Print to the screen that the program has started.
Brain.Screen.print("User Program has Started.");
while( true ) 
{

if ((Sonar1.distance(distanceUnits::in) >20) || (Sonar1.distance(distanceUnits::in)<0))
{

Brain.Screen.printAt(10,40,"Cold! Sonar Reading %.2f inches ",Sonar1.distance(distanceUnits::in) );
} 
else if ((Sonar1.distance(distanceUnits::in)>10))
{

Brain.Screen.printAt(10,40,"Warmer!! Sonar Reading %.2f inches ",Sonar1.distance(distanceUnits::in) );
}
else 
{

Brain.Screen.printAt(10,40,"Hot! Sonar Reading %.2f inches ",Sonar1.distance(distanceUnits::in) );
}
// Sleep the task for a short amount of time to prevent wasted resources.
task::sleep(20);

}
}

Will display only two digits of a float (real number) to the right of the 
decimal point



Optional: UltraSONIC Range Finder Mapping 
Activity
• Using a ruler map the reading to the actual distance from the sensor

Distance (Inches) Reading Error

0

5

10

15

20

25

30

35

40

45

50

Graph and develop 
an equation for 
Actual Distance 

and Sonar Sensor 
distance?



Ultrasonic Activity: Complete any one of the 
following

• Drivers assist
• When an object is far away – No force feedback

• When it gets close – Short force feedback

• When it is very close – Long force feedback

• Extension: Combine with the Potentiometer 
where the potentiometer is used to alter the 
values for close and very close.

• Draw a circle on the brain where the size 
changes based on how close it is to an 
object.
• The closer the object, then larger the circle.



Line Tracking Sensors



Line Tracking Sensors
• The Line Tracking Sensor is an active light sensor 

that emits an Infrared beam and measures how 
much is reflected back. 
• The amount of reflected Infrared light allows the 

robot to know if it is above a dark or light surface.

• The VEX Line Tracking Kit comes with a set of 3 
Line Tracking Sensors.

• Features:
• Can provide analog values at different levels of 

precision (percent, 8bit, 10bit, 12bit, millivolts)
• Connects to the V5 Robot Brain through Tri-Ports



Sensor Configuration

• The Line Tracking Sensors must 
currently be configured in code.
• light defines the type of sensor

• You must also choose a custom 
name and specify which Tri-Port it 
is connected to

• A full kit requires 3 Tri-Ports!
• Any available ports may be used

• It is good practice to for custom 
sensor names to reflect where
and what they are!



Additional Considerations

• Each Line Tracking Sensor includes an Infrared LED and Light Sensor. 

• All 3 sensors should be mounted the same distance from the measured 
surface, and that distance should be between 0.125 and 0.25 inches.

• Ambient light and changes in the measured surface do affect sensor readings.
• Line Tracking works better on narrow robots. ☺



Programming – value()

• The .value() command allows you to specify whether the values 
provided by the Line Tracking Sensor are a percentage 8bit number, 
10bit number, 12bit number or millivolt reading.
• Percentage: 0 – 100

• 8bit: 0 - 255

• 10bit: 0 - 1023

• 12bit: 0 - 4095



Measured Thresholds

• The Line Tracking Sensor provides a range of values, but the robot 
can only make Yes-No, True-False Boolean Comparisons. 

• A Threshold value is chosen to separate the range of many values 
into two categories: Light or Dark
• Unlike the Ultrasonic Rangefinder, the values do not correspond to an 

intuitive set of units!
• Instead, we must measure what the Line Tracking Sensors “see” when 

detecting a Light Surface versus a Dark surface to develop a Threshold.

• All three sensors may not provide identical readings, but the 
difference between Light values and Dark values should be large 
enough for one Threshold to work for each. 



Measuring Thresholds – Part 1

• The V5 Robot Brain allows you to check the 
values of the Line Tracking Sensors under the 
Devices menu. 

1. Choose Devices, then tap the triangular icon.

2. Tap the boxes where the Line Tracking 
Sensors are connected until they all display 
Analog Input.

3. The value of each Line Tracking Sensor is 
displayed as a 12bit number and percentage.



Measuring Thresholds – Part 2

4. Place the robot so that the Line Tracking 
Sensors are above the dark surface/line. 

5. Record the values of the Line Tracking 
Sensors. You can choose to use the 12bit 
number or percentage in your program.
• We will use percentage.

• It is normal for there to be some variance 
among the three sensors.



Measuring Thresholds – Part 3

6. Place the robot so that the Line Tracking 
Sensors are above the light surface/line. 

7. Record the values of the Line Tracking 
Sensors. You can choose to use the 12bit 
number or percentage in your program.
• We will use percentage.

• It is normal for there to be some variance 
among the three sensors.

• Notice that the light values are lower 
than the dark values!



Calculating the Threshold

• A good Threshold value separates the range of many values into two 
categories: Light or Dark. 

• Sensor readings above the Threshold are Dark, and below are Light.

• We can use the following formula to calculate Threshold:

• Values vary by robot, lighting condition, and measured surface!
• Make sure to calculate the best Threshold for your environment!

THRESHOLD =
LIGHT VALUE + DARK VALUE

2

THRESHOLD =
31 + 68

2
=

99

2
= 50



Line Tracking Sensors Setup and Reading 
Values 
• Setup: Before task main()

• line rightLineTracker(Brain.ThreeWirePort.F );
• rightLineTracker is the what the sensor is named in this example.  The 

programmer can pick a different name. It must start with a letter, no spaces, 
no punctuation, not a reserved word, not used somewhere else and is 
descriptive.

• Reading Values : Inside task main()
• rightLineTracker.value(analogUnits::range12bit)

• Returns a value 0 to 4096

• rightLineTracker.value(analogUnits::pct)
• Returns a value 0 to 100 



Line Tracking/Light Sensor Sample Code
// define your global instances of motors and other devices here
light rightLineTracker(Brain.ThreeWirePort.F );  

light centerLineTracker(Brain.ThreeWirePort.G );

light leftLineTracker(Brain.ThreeWirePort.H );

int main() 

{

while(true) 

{

Brain.Screen.printAt( 10, 50, "Right Tracker 12 bit %d", rightLineTracker.value(analogUnits::range12bit) );

Brain.Screen.printAt( 10, 70, "Right Tracker percentage %d", rightLineTracker.value(analogUnits::pct) );

Brain.Screen.printAt( 10, 90, "Center Tracker 12 bit %d", centerLineTracker.value(analogUnits::range12bit) );

Brain.Screen.printAt( 10, 110, "Center Tracker percentage %d", centerLineTracker.value(analogUnits::pct) );

Brain.Screen.printAt( 10, 130, "Left Tracker 12 bit %d", leftLineTracker.value(analogUnits::range12bit) );

Brain.Screen.printAt( 10, 150, "Left Tracker percentage %d", leftLineTracker.value(analogUnits::pct) );

// Allow other tasks to run
task::sleep(100);

}

}

Code Break:
Enter the code for up to three of the 

Line Tracking Sensors and run it to see 
the values returned.



Line Tracker Activities/Reinforcement Activity 

• ‘Out of line driver's’ helper: Write a program to inform a driver that 
they are driving on the line using the line tracker and haptic feedback.
• Calculate thresholds for the line tracking sensors

• Have the remote shake when the sensor is on a black line

• Brain Screen
• Using a graphic on the screen, change the color based on sensor reading

• White for light

• Red for dark


