
V5 VEXcode: Movement
Motor Setup

.rotateFor()

.spin()

Using the Clawbot

• Clawbot default values
• RightMotor = Port 10

• LeftMotor = Port 1

• Motors come with the green
(18:1 or 200 RPM) gear
cartridge

Need to configure the robot in V5 Coding
Studio

• Defining the motors: Before task main()
• motor RightMotor = motor(PORT1);

• RightMotor is the what the motor is named in this example. The programmer can
pick a different name. It must start with a letter, no spaces, no punctuation, not a
reserved word, not used somewhere else and is descriptive.

• PORT1 defines the port where the motor connects to the brain.

• motor LeftMotor = motor(PORT10, true);
• LeftMotor is the what the motor is named in this example. The programmer can pick a

different name. It must start with a letter, no spaces, no punctuation, not a reserved
word, not used somewhere else and is descriptive.

• PORT10 defines where the motor connects to the brain

• true sets this motor to be reversed.

Programming the Motor

• We will focus on the Motor.rotateFor()
command for movement.

• There are several movement
commands.

• Help.vexcodingstudio.com for a
reference to other Motor commands.
(Settings, actions, sensing commands)

Motor.rotateFor();

• Motor.rotateFor(double rotation , rotationUnits units, boolean waitForCompletion = true);

• Used to rotate the left and right motors for a specific target rotational distance.

• Motor.rotateFor can be used either as a blocking or non-blocking command.

• Can be a non-blocking by including ‘false’ as the waitForCompletion .

• This command can be used not only with wheel motors but also with arm or
claw motors, allowing them to be moved specific distances while safely avoiding
overextensions without the need for a limit switch.

https://help.vex.com/article/120-how-to-use-blocking-vs-non-blocking-code

Motor.rotateFor() Example. Assuming LeftMotor and
RightMotor were already configured in the program.

• LeftMotor.rotateFor(180, rotationUnits::deg, 50, velocityUnits::pct, false);

• RightMotor.rotateFor(180, rotationUnits::deg,50, velocityUnits::pct);

The LeftMotor will… …rotateFor()…

… 180 degrees …

… at 50% velocity…

… and will not block the next
command from starting.

The LeftMotor will… …rotateFor()…

… 180 degrees …

… at 50% velocity…

… and will block the next command from
starting until after this command is completed.

Motor.rotateFor(double rotation, rotationUnits:: units, double velocity, velocityUnits:: units_v, bool waitForCompletion=true);

A double (real) value that
describes how many units will
be completed. (10, 4.5, -20,…)

units Description
deg A rotation unit that is measured in degrees.
rev A rotation unit that is measured in revolutions.
raw A rotation unit that is measured in raw data form.

A double (real) value that describes the
velocity. (10, 4.5, -20,…)

units Description
pct A velocity unit that is measured in percentage.
rpm A velocity unit that is measured in rotations per minute.
dps A velocity unit that is measured in degrees per second

Optional: If left off then it will
complete this command before

starting the next command.
false = It will start the next command

immediately after starting this
command.

Motor Command rotateFor() with all of its options.
Assuming Motor is defined previously as a motor.

‘rotateFor’ Examples
int main() {

LeftMotor.rotateFor(3.5, rotationUnits::rev, 75, velocityUnits::rpm);

LeftMotor.rotateFor(360, rotationUnits::deg, 80, velocityUnits::dps, false);

RightMotor.rotateFor(720, rotationUnits::deg, 80, velocityUnits::dps);

LeftMotor.rotateFor(3.5, rotationUnits::rev, false);

RightMotor.rotateFor(3.5, rotationUnits::rev);//3.5 revolutions

RightMotor.rotateFor(3500, timeUnits::msec, 70, velocityUnits::pct);//3.5 seconds

RightMotor.rotateFor(3.5, timeUnits::sec);

}

The LeftMotor will rotate 3.5 revolutions at 75
revolutions per minute (rpm).

The LeftMotor will rotate 360 degrees at 80 degrees per
second (dps) and will not wait until the command is

finished before going to the next command.

The RightMotor will rotate 720 degrees at 80 degrees
per second (dps) and will complete this command

before going to the next command.

The LeftMotor will rotate 3.5 revolutions at the
default speed or speed set by the Motor.setVelocity

command and will not wait until the command is
finished before going to the next command.

The RightMotor will rotate 3500 milliseconds (ms) and
70% of the maximum speed.

The RightMotor will rotate 3.5 seconds (sec) at the
default speed.

Using the built in motor encoder to calculate the
rotations to complete a distance

• With the rotateFor() command you can use the built in
motor encoder to control how far the robot moves.

• We know
• 360 degrees = 1 revolution
• Since the wheel is connected directly to the motor.

• One motor revolution = One wheel revolution

• One wheel revolution = circumference of the wheel distance
traveled

• Circumference of the wheel = PI * wheel diameter

• Mini Challenge 1:
• Write a program to have the

robot move exactly one yard
without guessing.

• No testing on the course
• Check answers on the floor.

Example: Calculating the revolutions needed to travel 5 feet with a 4-
inch diameter wheel directly connected to the motor.

5 feet*(12 inches/ 1 foot)*(1 Revolution/ PI*4 inches) = 4.77 revolutions

Mini Challenge 2: 90 degree turns

• Write a program
• 90 degree turn in each direction

• Save it in slot 2

• Give a short description

• Try to calculate

• Check and modify as needed

Motor.spin()

• The .rotateFor() function stops the motor after completing
the command that can make travel inconsistent.

• The Motor.spin() function works like the motor[] = 100
command in RobotC.

• It will start the motor spinning and then go onto the next
command.

• The motor will continue spinning until the motor receives
another command.

Motor.spin() Syntax

• LeftMotor.spin(directionType:: dir, double velocity, velocityUnits:: units);

• LeftMotor.spin(directionType::rev, 50, velocityUnits::pct);

dir options
fwd Forward
rev Reverse

Optional: A double (real) value that
describes the velocity. (10, 4.5, -20,…)
If not included it uses the predefined

velocity and units.

units Description
pct A velocity unit that is measured in percentage.
rpmA velocity unit that is measured in rotations per minute.
dps A velocity unit that is measured in degrees per second

Motor.spin
example program

int main()

{ // Point Turn

LeftMotor.spin(directionType::rev, 50, velocityUnits::pct);

RightMotor.spin(directionType::fwd, 50, velocityUnits::pct);

task::sleep(2000);

//Swing Turn

LeftMotor.spin(directionType::fwd, 0, velocityUnits::pct);

RightMotor.spin(directionType::fwd, 50, velocityUnits::pct);

task::sleep(2000);
//Straight using the setVelocity function

LeftMotor.setVelocity(50, velocityUnits::pct);

RightMotor.setVelocity(50, velocityUnits::pct);

LeftMotor.spin(directionType::fwd);

RightMotor.spin(directionType::fwd);

task::sleep(2000);
//Stop both motors.

LeftMotor.stop();

RightMotor.stop();

}

Using Motor.spin() and the while loop to go for a distance
int main()

{

//Start the motors spinning

LeftMotor.spin(directionType::fwd, 50, velocityUnits::pct);

RightMotor.spin(directionType::fwd, 50, velocityUnits::pct);

//While the rotations are less than 360 degrees, continue

while (RightMotor.rotation(rotationUnits::deg)<360){}

//When the RightMotor is no longer less than 360 degrees, stop both motors

LeftMotor.stop(); //Stop both motors.

RightMotor.stop();

}

Same as previous
slide with code to
display current
rotations.

int main()

{

Brain.Screen.print("Starting Degrees %.1f", RightMotor.rotation(rotationUnits::deg));

task::sleep(2000);

LeftMotor.spin(directionType::fwd, 50, velocityUnits::pct);

RightMotor.spin(directionType::fwd, 50, velocityUnits::pct);

Brain.Screen.newLine();

while (RightMotor.rotation(rotationUnits::deg)<360)

{

task::sleep(20);

Brain.Screen.print("Degrees %.1f", RightMotor.rotation(rotationUnits::deg));

Brain.Screen.setCursor(2,1);

}

LeftMotor.stop();//Stop both motors.

RightMotor.stop();

Brain.Screen.newLine();

Brain.Screen.print("Ending Degrees %.1f", RightMotor.rotation(rotationUnits::deg));

}

Labyrinth Challenge

• Complex Behavior
• Complete the maze

• Simple Behaviors

Programming Arms: Handling a range of motion
limitation.

Sets the motor to
stop spinning if it gets

stuck

Sets the motor to maintain
its position after the

movement is complete.

Rotates to the absolute
position of 90 degrees

Using the Motor for Arm Movement

motor ArmMotor = motor(PORT8);

int main()

{
ArmMotor.setTimeout(5, timeUnits::sec);

ArmMotor.setStopping(brakeType::hold);

ArmMotor.rotateTo(90, rotationUnits::deg);

}

Sets the motor to stop
spinning if it gets stuck

Sets the motor to maintain
its position after the

movement is complete.
brakeType::hold
brakeType::coast
brakeType::brake

Rotates to the absolute
position of 90 degrees. So
the arm could move up or

down.

The motor setup is just like the
motor setup when motors are

used for driving.

Motor.rotateTo(double rotation, rotationUnits:: units, double velocity, velocityUnits:: units_v, bool waitForCompletion=true);

A double (real) value that
describes how many units will
be completed. (10, 4.5, -20,…)

units Description
deg A rotation unit that is measured in degrees.
rev A rotation unit that is measured in revolutions.
raw A rotation unit that is measured in raw data form.

Optional: A double (real) value that
describes the velocity. (10, 4.5, -20,…)

Optional: If left off will use the default or previously defined velocity
units Description
pct A velocity unit that is measured in percentage.
rpm A velocity unit that is measured in rotations per minute.
dps A velocity unit that is measured in degrees per second

Optional: If left off then it will
complete this command before

starting the next command.
false = It will start the next command

immediately after starting this
command.

Motor Command rotateTo() with all of its options.
Assuming Motor is defined previously as a motor.

rotateTo() vs rotateFor()

• rotateFor() rotates a motor the
full specified amount regardless
of the current motor encoder
reading.

• rotateTo() rotates a motor to a
specific motor encoder reading.

0º 90º 180º 270º 360º-90º-180º-270º-360º

0º 90º 180º 270º 360º-90º-180º-270º-360º

.rotateFor(180)

.rotateTo(180)

Programming
Hands/Grabbers

Sets the motor to
stop spinning if it gets
stuck after 2 seconds

Sets the motor to maintain
its position after the

movement is complete.

Rotates to the absolute
position of 90 degrees

Sets the maximum amount
of torque the motor will

use.

Exercise:

• Each Cube scored in a Goal Zone is worth a base of one (1) point.

• For each Cube of a given color that is Placed into a Tower, the point
value for Cubes of that color increases by one (1) point.

• For example, if there are three (3) green Cubes Placed in Towers at
the end of the Match, then all green Cubes Scored in Goal Zones
are worth four (4) points.

Using the mini cubes and the modified
field, score as many points as you can
autonomously.

