
V5 Coding Studio: Movement
Motor Setup

rotateFor()

Turn

Using the Clawbot

• Clawbot default values
• RightMotor = Port 10

• LeftMotor = Port 1

• Motors come with the green
(18:1 or 200 RPM) gear
cartridge

Need to configure the robot in V5 Coding
Studio 1) Select ‘Robot’ to get to

the configuration window

3) Drag
and
Drop
the

parts
for the
robot.

2) If you don’t see the ‘Motor’ select
the ‘Smart Devices’ buttons.

Motor Setup

• Name the Motor
• Start with a letter

• Can use letters, umbers and
underscores

• Not a VEX C++ reserved word

• Describes the device. (LeftMotor,
ArmMotor, FrontSonarSensor, …)

Set the Motor Port
1) Click on the number to open

the port selection window.

2) Click on the port to select it.
For the clawbot:

Right Motor in Port 10
Left Motor in Port 1

Set Gear Cartridge and Reverse as needed

• For the Clawbot the motors
will need to mirror each
other so to keep it from
spinning in circles when it
is supposed to go straight,
reverse the Right Motor.

1) Click on the gear
to open the Motor
Settings Window.

Reversed button.

Programming the Motor

• We will focus on the Motor.rotateFor()
command for movement.

• There are several movement
commands.

Motor.rotateFor() Example

The LeftMotor will…

…rotateFor()…

… 90 degrees …

… at 50% velocity.

Test it.
• Create, save, download and run this program.

• What do you notice?

Motor.rotateFor(double rotation, rotationUnits units, double velocity, velocityUnits units_v, bool waitForCompletion=true)

A double (real) value that
describes how many units will
be completed. (10, 4.5, -20,…)

Unit Description
deg A rotation unit that is measured in degrees.
rev A rotation unit that is measured in revolutions.
raw A rotation unit that is measured in raw data form.

A double (real) value that describes the
velocity. (10, 4.5, -20,…)

Unit Description
pct A velocity unit that is measured in percentage.
rpm A velocity unit that is measured in rotations per minute.
dps A velocity unit that is measured in degrees per second

Optional: If left off then it will
complete this command before

starting the next command.
false = It will start the next command

immediately after starting this
command.

Motor Command rotateFor() with all its options

‘rotateFor’ Examples
int main() {

LeftMotor.rotateFor(3.5, rotationUnits::rev, 75, velocityUnits::rpm);

LeftMotor.rotateFor(360, rotationUnits::deg, 80, velocityUnits::dps, false);

RightMotor.rotateFor(720, rotationUnits::deg, 80, velocityUnits::dps);

LeftMotor.rotateFor(3.5, rotationUnits::rev, false);

RightMotor.rotateFor(3.5, rotationUnits::rev);//3.5 revolutions

RightMotor.rotateFor(3500, timeUnits::msec, 70, velocityUnits::pct);//3.5 seconds

RightMotor.rotateFor(3.5, timeUnits::sec);

}

The LeftMotor will rotate 3.5 revolutions at 75
revolutions per minute (rpm).

The LeftMotor will rotate 360 degrees at 80 degrees per
second (dps) and will not wait until the command is

finished before going to the next command.

The RightMotor will rotate 720 degrees at 80 degrees
per second (dps) and will complete this command

before going to the next command.

The LeftMotor will rotate 3.5 revolutions at the
default speed or speed set by the Motor.setVelocity()

command and will not wait until the command is
finished before going to the next command.

The RightMotor will rotate 3500 milliseconds (ms) and
70% of the maximum speed.

The RightMotor will rotate 3.5 seconds (ms) at the
default speed.

Proportional Movement
• With the rotateFor() command you can use the

built-in motor encoder to control how far the robot
moves.

• We know
• 360 degrees = 1 revolution
• Since the wheel is connected directly to the motor.

• 1 motor revolution = 1-wheel revolution

• 1 - wheel revolution = circumference of the wheel
• Circumference of the wheel = PI * wheel diameter

• Mini Challenge 1:
• Write a program to have the

robot move exactly one yard
without guessing.

• No testing on the course
• Check answers on the floor.

Example: Finding the revolutions needed to travel 5 feet with a 4-inch
diameter wheel directly connected to the motor.

5 feet*(12 inches/ 1 foot)*(1 Revolution/ PI*4 inches) = 4.77
revolutions

Mini Challenge 2: 90 degree turns

• Write a program
• 90 degree turn in each direction

• Save it in slot 2

• Give a short description

• Try to calculate

• Check and modify as needed

Programming Arms: Handling a range of motion
limitation.

Sets the motor to
stop spinning if it gets

stuck for 5 seconds

Sets the motor to maintain
its position after the

movement is complete.

Rotates to the absolute
position of 90 degrees

rotateTo() vs rotateFor()

• rotateFor() rotates a motor the
full specified amount regardless
of the current motor encoder
reading.

• rotateTo() rotates a motor to a
specific motor encoder reading.

0º 90º 180º 270º 360º-90º-180º-270º-360º

0º 90º 180º 270º 360º-90º-180º-270º-360º

.rotateFor(180)

.rotateTo(180)

Programming
Hands/Grabbers

Sets the motor to
stop spinning if it gets

stuck

Sets the motor to maintain
its position after the

movement is complete.

Rotates to the absolute
position of 90 degrees

Sets the maximum amount
of torque the motor will

use.

rotateFor() Summary
• Motor.rotateFor(double rotation , rotationUnits units, boolean waitForCompletion = true);

• Used to rotate the left and right motors for a specific target rotational distance.

• Motor.rotateFor can be used either as a blocking or non-blocking command.

• Can be a non-blocking by including ‘false’ as the waitForCompletion .

• This command can be used not only with wheel motors but also with arm or claw motors,
allowing them to be moved specific distances while safely avoiding overextensions without
the need for a limit switch.

…rotateFor()…

… 90 degrees …

… at 50% velocity.

The LeftMotor will…

https://help.vex.com/article/120-how-to-use-blocking-vs-non-blocking-code

Motor.rotateTo() Summary:.

• Turns on the motor and spins it to an absolute target rotation value

• rotateTo(double rotation, rotationUnits units, bool waitForCompletion=true);

• rotateTo(double rotation, rotationUnits units, double velocity, velocityUnits
units_v, bool waitForCompletion=true);

Programming Strategy: Behaviors

• Behavior: Anything the robot does.

• Basic Behaviors: Single Commands

• Simple Behaviors: Simple tasks (go forward)
• Can be broken down into single commands

• Complex Behaviors: Complex Tasks (Solve a maze)
• Can be broken down into simple behaviors

Functions: Judson

Movement Challenges

1. Complete the Labyrinth Challenge

2. Programming Skills Challenge
• With your teammate read the rules for

Programming Skills Challenge (Posted on
the website)

• Score as many points as possible

• Look up other movement commands as
needed to help.

